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The familiar Segr6-Silberberg effect of inertia-induced lateral migration of a 
neutrally buoyant rigid sphere in a Newtonian fluid is studied theoretically for 
simple shear flow and for two-dimensional Poiseuille flow. It is shown that the 
spheres reach a stable lateral equilibrium position independent of the initial 
position of release. For simple shear flow, this position is midway between the 
walls, whereas for Poiseuille flow, it is 0.6 of the channel half-width from the 
centre-line. Particle trajectories are calculated in both cases and compared with 
available experimental data. Implications for the measurement of the rheological 
properties of a dilute suspension of spheres are discussed. 

1. Introduction 
The phenomenon of inertia-induced cross-stream migration of small suspended 

particles in flowing suspensions has occupied a central position in the rheology 
and mechanics of such materials since the classical investigations of Segr6 & 
Silberberg (1962a, b, 1963). Though there had been occasional prior reports in the 
literature of non-uniform concentration distributions of particles in pipe flow 
(cf. Starkey 1956), these authors provided the first conclusive demonstration 
that neutrally buoyant rigid spheres in Poiseuille flow could, under appropriate 
circumstances, migrate across streamlines. More surprising than the existence 
of migration, however, was Segr6 & Silberberg’s observation that the spheres 
eventually attained an equilibrium position at  approximately 0-6 of the tube 
radius from the tube centre-line. 

Following Segr6 & Silberberg, many subsequent experimental studies have 
been reported in which either the bulk flow configuration or the particle properties 
differed from those of the original work. Many of these are summarized in two 
excellent review articles, one by Goldsmith & Mason (1966) and the other by 
Brenner (1966). More recent investigations have been reported by Tachibana 
(1  973) and Halow & Wills (1 970a, b) .  These various studies show that the general 
behaviour for rigid spheres depends strongly on the specific bulk flow geometry 
and on whether or not the particle is neutrally buoyant. For Couette flow, 
neutrally buoyant rigid spheres migrate to the centre-line, while for both two- 
and three-dimensional Poiseuille flow, the sphere ultimately attains an equi- 
librium position which is approximately 60% of the way from the centre-line 
to the vessel walls. On the other hand, a non-neutrally buoyant sphere subjected 
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to Poiseuille flow through a vertical flow channel is found to migrate towards 
the walls if its velocity is greater than the undisturbed fluid velocity evaluated 
a t  the same point, but towards the centre-line if the particle velocity lags behind 
the undisturbed fluid velocity. 

I n  the present paper, we consider the case of a neutrally buoyant rigid sphere 
suspended in a Newtonian fluid which is undergoing either simple shear flow 
or a two-dimensional Poiseuille flow between two infinite plane boundaries. 
Many previous investigations have attempted to provide a theoretical descrip- 
tion of the migration phenomenon. Experimentally, it has been recognized for 
some time tha.t a neutrally buoyant rigid sphere suspended in a laminar uni- 
directional flow will rotate and translate without crossing the undisturbed stream- 
lines, provided that the appropriate particle Reynolds number is sufficiently 
small. Indeed, Bretherton (1962) has shown theoretically that, if the inertia 
terms of the equations of motion are completely neglected, no lateral force can 
exist for a body of revolution in a unidirectional flow. Theoretical treatment of 
the migration problem thus requires inclusion of inertia effects. All investigators 
to date have used asymptotic expansions for small but non-zero values of the 
Reynolds number as a means of estimating the inertial contribution to the 
lateral motion of the particle. The two best known studies are those of Rubinow 
& Keller (1961) and Saffman (1965). Rubinow & Keller (1961) considered the 
case of a rigid sphere which is simultaneously spinning with an angular velocity 
as and translating (in a perpendicuhr direction) a t  a velocity Us through an 
unbounded stationary fluid a t  small (but non-zero) Reynolds number. The 
lateral force resulting in this case is 

FL = 7ra3p08, x Us, 

in which po is the fluid density and a is the radius of the spherical particle. 
Saffman (1965) considered the case of a uniform shear flow (with shear rate ,8*) 
of an unbounded fluid of viscosity po. The sphere was assumed to rotate with 
an angular velocity as parallel to the vorticity vector of the undisturbed shear 
flow, and to translate with a velocity V relative to the local undisturbed velocity 
of the suspending fluid. The magnitude of the lateral force for this ‘slip-shear’ 
case is 

which differs radically from that predicted by the ‘slip-spin’ mechanism of 
Rubinow & Keller (1961). In  particular, the magnitude of the lateral force given 
by (1.2) is completely independent of the rate of rotation of the particle. The 
direction of the force (1.2) is such that a sphere lagging behind the local undis- 
turbed fluid would migrate in the direction of the larger, undisturbed velocity, 
while a sphere leading the undisturbed flow would migrate in the opposite 
direction. Although a number of attempts have been made to use the theories 
of Rubinow & Keller (1961) and of Saffman (1965) to explain or correlate ex- 
perimental observations of lateral migration, neither furnishes a satisfactory 
fundamental explanation of the phenomenon for the motion of neutrally buoyant 
particles in tubes or other bounded flow systems. Cox & Brenner (1968) were 
the first to consider the complete three-dimensional Poiseuille problem taking 

FL = 6 . 4 6 ~ ~  ~ a 2 ( P * ~ o / p o ) 4  (1.2) 
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account of the presence of the walls and the non-uniformity of the shear. These 
authors used the method of matched asymptotic expansions with two small 
parameters, the Reynolds number and the ratio alR, of the sphere radius to the 
tube radius, to solve for the inertia-induced force and torque on the sphere. 
Unfortunately, however, the solution is not given in explicit form, but rather 
involves a number of very complex integral functions. As a result, no definite 
conclusions can be reached regarding the direction of the lateral force, its precise 
magnitude a t  any given radial position or even the presence or absence of an 
equilibrium position corresponding to the original observation of Segre & 
Silberberg . 

Two-dimensional Poiseuille flow was previously studied experimentally and 
theoretically by Repetti & Leonard (1966), who attempted to explain the 
observed phenomenon of intermediate equilibrium positions by means of the 
Rubinow-Keller slip-spin theory. Most recently, Tachibana (1 973) reported ex- 
perimental results for two- and three-dimensional Poiseuille flow and concluded 
that the equilibrium positions are identical for both cases. Couette flow was 
investigated, both experimentally and theoretically, by Halow & Wills (1970a, b ) .  
The experimental work of these authors included a determination of equilibrium 
positions, as well as detailed measurements of the particle trajectories, prior 
to reaching equilibrium. The theory proposed was based upon the solution of 
Saffman (1965) and was represented as providing agreement with the particle 
trajectories. However, this agreement must be considered fortuitous since it 
was only achieved after multiplying Saffman’s original (corrected) lift force by 
an empirical factor of 5 .  Our present analysis is closely similar to that of Cox & 
Brenner (1968). Specifically, we use the method of reflexions (equivalent to the 
formal expansion in a/&,) to obtain the necessary solutions of the fluid motion. 
The lateral force on and velocity of the sphere are evaluated from these solutions 
using the generalized reciprocal theorem of Lorentz. By restricting our attention 
to two-dimensional flows between plane boundaries, we have been able to 
evaluate the magnitude and direction of the lateral force. I n  the next section of 
the paper, we outline the general method of solution and derive the necessary 
governing equations. The third section outlines the solution for creeping motion 
of a sphere suspended in a general quadratic buIk flow between two plane walls 
when the sphere is located a t  an arbitrary position between them (though not 
too close to either wall). The fourth section considers the related problem of the 
creeping motion of a sphere normal to two parallel walls when the sphere is 
again located a t  an arbitrary position between them. I n  the fifth section, we 
use these two solutions and the generalized reciprocal theorem to calculate the 
lateral force on the particle for both the simple shear and two-dimensional 
Poiseuille flow configurations. Finally, in the last two sections we provide 
trajectory calculations for a sphere and consider the steady-state concentration 
distribution for various bulk flow rates in the presence of translational Brownia,n 
motion. The trajectory calculations are compared with available experimental 
data in the Couette and two-dimensional Poiseuille systems. The non-uniform 
concentration distributions lead to an apparent non-Newtonian viscosity be- 
haviour for two-dimensional Poiseuille flow, the behaviour depending on the 
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specific apparatus. This result is discussed in light of current theories of suspension 
rheology and of the related experimental data of Segr6 & Silberberg (1963) for 
apparent viscosities in tube flow of a dilute suspension of rigid spheres. 

2. The basic equations 
We consider a neutrally buoyant rigid sphere of radius a freely suspended in 

an incompressible Newtonian fluid which is confined between two parallel 
infinite plane walls separated by a distance d. The suspending fluid is assumed to 
be undergoing either a simple shear flow or a two-dimensional Poiseuille flow. 
We denote the fluid viscosity by ,uo and its density by po. The basic flow geometry 
and remaining physical variables for the problem are depicted in figure 1. Of 
particular importance is d,, the distance from the stationary wall in shear flow 
or from the bottom wall in two-dimensional Poiseuille flow to the centre of the 
particle. Also, as indicated, we employ co-ordinate axes fixed with respect to the 
particle for the basic analysis, with x* in the direction of the undisturbed velocity, 
y* in the direction of the undisturbed vorticity and z* in the cross-stream direc- 
tion. The origin of the co-ordinate system is coincident with the centre of the 
particle, hence, the walls in this system are located a t  z* = - d, and z* = d - d,, 
respectively. We assume that the sphere is translating a t  a velocity U: and 
rotating with an angular velocity a:. As we have noted in the introduction, 
there can be no lateral (2) component to U: in the absence of inertial effects in 
the disturbance flow induced by the particle. The prime objective of the present 
work is the calculation of the first inertia-induced contribution to the z com- 
ponent U;. I n  the following analysis, all variables will be non-dimensionalized 
with respect to the characteristic length scale a and an as yet unspecified velocity 
scale V z .  Variables with the superscript * are dimensional and all others non- 
dimensional, except for the obvious dimensional length scales a, d and d,. The 
Reynolds number is then defined as Re = pa V,* alpo. 

We begin the detailed analysis with the full dimensionless governing equa- 
tions and boundary conditions for the velocity and pressure fields U and P 
expressed in the particle-fixed co-ordinates indicated previously: 

V2U-VP = Re(U.VU), V.U = 0,)  

I U = Q s x r  on r =  1, 

U = V, - Us on the walls, 

U - t V  as r- too.  I 
Here, V represents the dimensionless undisturbed bulk flow while V, is the 
dimensionless velocity of the walls. The undisturbed flow (V,Q) is measured 
relative to  the particle-fixed co-ordinate system described earlier. I n  order to 
consider the simple shear and two-dimensional Poiseuille flows simultaneously, 
the undisturbed velocity and pressure fields will thus be expressed in the general 
form 

where a, /3 and y in simple shear flow are given by 

Gt = ES, p = X o K ,  = 0, 
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(6 )  
FIGURE 1. The physical system for (a)  simple shear flow and 

( b )  two-dimensional Poiseuille flow. 

and in two-dimensional Poiseuille flow take the form 

a = 4VmaxS(l-s) ,  /I = 4V&(l-  2 s )  K, 7 = - 4 V m a x ~ ~ .  ( 2 . 4 )  

In  the above s = d,/d and K = a/d,  with d, defined in figure 1.  Both V,  and Vmax 

are non-dimensionalized with respect to Vz. 
The solution o f  (2.1) is aided by introducing the disturbance velocity and 

pressure fields v = U - V and q = P - Q. Since the undisturbed fields V and Q 
themselves satisfy the equations and boundary condition 

V'V-VQ = 0,  V.V = 0, 

V = V,- Us on the walls 

for all values of the mean (bulk flow) Reynolds number,? it is straightforward 
to obtain the governing differential equations and boundary conditions for the 
disturbance fields: 

(2.6) 

F L M  65 

i 
V2v - Vq = Re (v. Vv + v .  VV +V. Vv), 

v . v  = 0, 

v = G I 2 , x r - V  on r = 1 ,  

v = 0 on the walls, 
v + O  as r+m. 

t The inertia terms vanish identically for the unidirectional flows considered here. 

24 
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In  addition, since the disturbance flow is generated by the shear field acting on 
the sphere, it is clear that the appropriate characteristic velocity V,* defining 
the Reynolds number in (2.1) and (2.6) is the shear velocity Vz(a/d) for simple 
shear flow and Vgax(a/d) for two-dimensional Poiseuille flow.? Thus, the appro- 
priate Reynolds number for the disturbance flow (v, q )  is Re = po VzKa/,uO for 
simple shear flow and Re =_ po VLax Ka/,uo for two-dimensional Poiseuille flow. 
The present paper is concerned with the solution of (2.6) in the double limit 
Re -+ 0 with K fixed, followed by K -+ 0. We shall soon see that it is necessary to  
have Re < K~ for the present method of solution. It is also worthwhile to note 
that the Reynolds number for the bulk flow (V, Q ) ,  say = po V2d/,uo for the 
simple shear flow, is 5 = Re K - ~ .  Thus, the condition Re < K~ also implies that 

Following the approach of Cox & Brenner (1968), we thus proceed by 
postulating the existence of an asymptotic expansion for v, q, U ,  and 51, of 

Re< 1. 

(2.7) 

the form 
v = do) + Re dl) + . . . , 

U, = U$O)+Re UL1)+ ..., 
q = q ( O )  + Re q(1) + . . . , 

51, = 8$o)+Re51i1)+..., 
in which the individual terms (do), 9'0)) and (dl), q(l)) satisfy the equations 

(2.8) 1 
V2dO) - Vq" = 0, v . do) = 0, 

v@)= 8~oJxr-(a+/3z+y2)e,+Uio) on r = 1, 

do) = 0 on the walls, 

v(O)-+ 0 as r -+ co 

The condition for large r in (2.9) requires justification since it is well known 
that, to solve the Navier-Stokes equations by perturbation expansion, an outer 
expansion is generally required and a matching of the inner and outer expansions 
is necessary to obtain higher-order corrections. In  the present case, however, 
Cox & Brenner (1968) have shown that the first term in the outer expansion is 
of smaller order than the Reynolds number to the first power, so that 'matching' 
for Re+) is accomplished by simple application of the natural boundary con- 
dition, namely v(l) -+ 0 as r -+ co. Alternatively, it may be verified from the 
solution for (v(O),q(o)) that the ratio of inertia to viscous terms is ReK-l(r*/a). 
Hence, close to and within the walls r* = O(d) ,  the Stokes solution, provides 
a uniformly valid first approximation provided that Re < K ~ .  In  any case, it 
is clear that the outer expansion in Re is not required to obtain the lateral velocity 
to O(Re). 

t However, if the sphere is not neutrally buoyant, SO that an appreciable slip velocity 
is introduced, the dominant disturbance may be generated by this slip velocity and the 
appropriate characteristic velocity for the Reynolds number would be the slip velocity. 
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The particle satisfies the usual equations of rigid-particle dynamics with no 
external force and torque. Because of the O(Re) migration, the particle does 
suffer translational and angular accelerations, but these are O(Re2). Hence, there 
is no net hydrodynamic force or torque on the particle at O(1) and O(Re),  and 
this fact is used to calculate Us and 51, to O(Re). The zeroth-order terms Ui0) 
and are the translational and angular velocity of the sphere in the absence 
of inertia and can be written as 

(2.10) 

The first-order correction, taking inertia into account, contributes the additional 
translational and angular velocities Uil) and ail). At present,we are interested 
in calculating the lateral migrationvelocity U$, which is the z component of Uil). 
Clearly, Uit) could be determined by solving for Vcl) leaving Uil) and un- 
specified and then applying the conditions of zero net external force and torque 
on the freely suspended particle; hbwever, it  can be shown that a complete 
solution for v(l) is not necessary for this purpose. Instead, a version of the well- 
known reciprocal theorem of Lorentz which we shall outline in the next paragraph 
can be employed; this allows the migration velocity to be expressed in terms of 
a certain volume integral over the total fluid volume. Careful application of the 
reciprocal theorem also provides a proof of the fact that the lateral velocity 
calculated in the manner outlined above produces results identical to those of 
the approach outlined by Cox & Brenner (1968), in which one, in effect, first 
calculates the force required to prevent migration. 

Suppose that ~ ( l )  is the stress tensor corresponding to the velocity and pressure 
fields v(Q and q@) and f is the inhomogeneous part of the governing equation for 

(2.11) 
(V'l), q(l)), that is 

(2.12) 

&) = - qcq + VV(1) + (VVcl))T, 

f = $0) .  Vv@) + v(0). vv + v . VVcO), 

where 1 is the idemfactor and the superscript T stands for the transpose of the 
~ - 

dyadic; then we can write 
V.T(')-f = 0, (2.13) 

or in summation notation 7fi,)j - fi = 0. (2.14) 

Now let us define a new velocity field (u, p) according to the equations 

v2u-vp = 0, v . u  = 0, 

u = e ,  on r =  1, 

u = 0 on the walls, 

u-+O as r-+co, 

(2.15) 

which is the velocity field for a sphere translating with unit velocity perpendicular 
to the walls in a quiescent fluid. Denoting the corresponding stress tensor as t, 

(2.16) we can write V . t  = 0,  or tii,i = 0. 

Equations (2.14) and (2.16) then lead trivially to the equations 

(7$,)? -fi) Ul = 0, t i j , i tp  = 0. (2.17a, b )  
24-2 
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On subtracting (2 .17b) from (2.17a) and integrating over the entire fluid volume, 

and rearranging, we obtain 

Use of the divergence theorem on the first and third terms yields 

Here n denotes the unit vector pointing from the walls and particle surface into 
the surrounding fluid. By use of the definitions of r:;) and tiz and the equation of 
continuity, the integrand in the second integral can be shown to be identically 
zero. Hence, applying the boundary conditions 

v(l) = u = 0 on the walls, 

v(l)+ 0, u --f 0 as r -+ 00 

and vil) = ( U i l ) ) j + ~ j m k r k ( ~ ~ l ) ) m ,  uj = SBj on r = 1 
we obtain 

The first term on the left-hand side is the x component of the force on the sphere 
due to the velocity field (v(l),q(l)). Since the sphere is neutrally buoyant and 
freely suspended, we require this force to be identically zero, i.e. 

n 

The integral in the second term is nothing more than the hydrodynamic force 
on the sphere due to (u,p), i.e. the force on a sphere which translates between 
and normal to two infinite plane boundaries in a quiescent fluid, while the integral 
in the third term is the corresponding torque due to (u,p). The latter is clearly 
zero in view of the symmetries of the problem (2.15), while we shall show in $4 
that the former is of the form 

I- 

J n , t i j d ~  = - 6 n [ l +  O ( K ) ]  S,~.  
A 

It thus follows that the migration velocity TI;:) is given by 

(2.20) 

The function f can be determined completely once the zeroth-order solution 
do) is available, and the solution of (2.15) is straightforward. Hence, the reciprocal 
theorem, in the form (2.20), offers a considerabIy simplified scheme for calculating 
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the lateral migration velocity, especially when compared with the alternative 
calculation of the full first-order velocity field v(l). 

It is significant that the same result for the migration velocity U$ can also 
be obtained to the present level of approximation by a ‘two-step’ procedure in 
which one first calculates the force on the sphere with Uii’ z 0. I n  this case, 
(2.19) becomes 1’, n& dA = - 

Thus, the inertia-induced force is given by 
r 

(2.21) 

Clearly, upon adding the hydrodynamic drag associated with lateral motion 

- 6n[ 1 + O ( K ) ]  Re Uiil 

and equating the sum to zero, the expression (2.20) is again obtained. The direct 
approach represented by the original development leading to (2.20) and the 
Cox & Brenner (1968) approach involving an intermediate calculation of FL 
thus produce identical results to the present order of approximation. I n  view of 
the historical development of the problem, we shall adopt the latter, two-step 
calculation. 

In  the following two sections, we consider solutions of the problems (2.8) 
and (2.15) for do) and u which are necessary for evaluation of (2.21). 

3. Solution for (do), 
Here we consider the creeping motion of a rigid sphere which is translating 

with a velocity ULZ e, and rotating with an angular velocity fli: e, in either 
simple shear or two-dimensional Poiseuille flow between two parallel plane 
boundaries. As we have seen, the corresponding velocity field ( ~ ( o ) ,  q ( O ) )  is required 
to evaluate FL using the reciprocal theorem, equation (2.21). 

The solution ie found by means of the iterative method of reflexions in which 
the complete solution ( ~ ( 0 ) )  q(0)) is constructed as a sum of terms which alternately 
satisfy boundary conditions on the sphere surface and on the walls. A detailed 
description is given in Happel & Brenner (1973, chap. 7). The procedure actually 
produces a sequence of terms of increasing order in K ( = aid) which is convergent 
for K small, provided that the sphere is not too close to the walls. Expressing the 
velocity and pressure fields in the form 

the method of reflexions is defined by the sequence of problems 

(3.2) 

v ~ v ~ ~ ’ - v q ~ o ’  = 0, 0 . v p  = 0, 

via) = flco)e SY xr-((cc++pz+yz2-Q’)e, on r = I, 

via'-+ 0 as r +a; 
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V2VfJ’ - vqp = 0, v . vp’ = 0, 

v2vp - vqp = 0) v . v p  = 0) 

via) = -via’ on the walls; 

vLO’ = - on r = 1, 

0 as r+w. 

The quantities Q!$ and Uip,) are as yet unknowns, which we shall shortly evaluate 
by equating the net force and torque acting on the sphere owing to do) identically 
to zero. The field (via), p‘:“)) satisfies the boundary condition on the sphere aurface, 
but in doing so generates non-zero terms a t  the walls. The second term (vp), qko)) 
cancels these terms a t  the wall, but in the process generates a non-zero con- 
tribution a t  the sphere surface which must be cancelled by the third term 
(vc), qko)), and so on to higher orders. 

The solution for (vio),qio’) is found by using the general solution of Lamb. 
The result is 

v p  = (up, v y ,  wp), 

30, 2x2 
+y + 3 E 1  (1  $1 f + 3 4  ( ? ? )  ; 

where 

A - -g(u(O)-a-$y))  B - - 1 u(O)-a-3 } (3.6) 
1 -  82 1 - B (  82 5 Y ) ,  Cl = -(nip,‘- m, 
Dl = -Qp, El = -Qp, PI = -1 SY, Gl =ib, Hl =&y. 

The solution for (vho), qLo)) is found by requiring vLO) = -via’ on the walls. Since 
the walls are a distance of order K-1 from the sphere, it is convenient to introduce 
outer variables defined by 

xf = KX, y f  = KY, zf  = KZ (r’ = K r ) .  (3.7) 
It is then necessary to re-express the field ( d o ) ,  q ( O ) )  in a form appropriate to the 
region near the walls. This is accomplished by introducing the relationship 
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where 
can be expressed in integral form as 

= fr([z' + y y f ) ,  A = &<z' and c2 = t2 + v2, so that the velocity field via) 

(3.9b) 

where 9, = 

g, = 

9 3  = 

In view of the expressions (3.9), the field vL0) may be assumed to have the following 
form, which satisfies the Stokes and continuity equations: 

vp = (up', v p  , wp ) , 

(3.11 6 )  

-exP(A) [97+9~+gg-A99 l }~d~dy .  iE (3.11c) 

Here, g4,g5, . . . ,gg are unknown functions of 6 and p which are evaluated by 
applying the boundary conditions via) + vio) = 0 on the walls zf = - s and z' = 1 - s. 
In the interest of brevity, the detailed results are not presented here (see Ho 
1974); however, results to lowest order in K will appear in $5.  For our present 
purposes, it  is sufficient to note that g4, g5, . . . , g, depend on 5 and y only in 
the combination 5 [ = (t2 + q2)*] and that they can be expressed in terms of g,, g, 
and g3. 

In order to solve for (vb0', qAo)), it is necessary to evaluate via) in the vicinity of 
the sphere where x' and y' are of order K .  This is achieved by expanding the 
integrand for small values of x f 2  + y',. The results are 

Ui0) = $(i?I, + 14) - &K(212 +I5 - I,) Z + . . . , (3.12a) 

.gJ' = 04- ..., (3.126) 

wp = - & K ( I 2  + I5 + 17) x + . . . , (3.1 2 c) 
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With vho) expressed in this form, via) too can be found easily using Lamb’s general 
solution. The result is identical to (3.5) with A,, B,, . . . , H, replaced by A,, B,, . . . , H3, 
where 

(3.14) I A3 = #(I1 + +I4), B3 = $(I1 + 4 1 4 ) ,  

C, = -&c(&12-I,), D, = $ K ( q 1 2 + 1 5 ) ,  

E,  = ~K(# I~  + 15), F,, G,, H,  = higher order in K .  

This process of satisfying boundary conditions on the sphere and on the walls 
can be repeated to  yield corrections of higher order in K.  For the present purposes, 
it suffices to stop at vh0). 

The hydrodynamic force and torque (dimensionless) acting on the body can 
be calculated using the formulae (see Happel 6% Brenner 1973, p. 308) 

F, = 47T(A1+A 3 - k . . . ) ,  Tu = 8n(Cl+C3+ ...), ( 3 . 1 5 ~ ,  b )  

for which the coefficients A,, A,, C, and C, are previously listed in (3.6) and (3.14). 
It is obvious that, since (v(O),p(O)) corresponds to Stokes flow, the force and torque 
on the sphere are in the x direction and y direction, respectively. It is most 
convenient to re-express the coefficients A, and C3 in terms of A,, C, and D,, i.e. 

A, $(11++14) = KA,K~+K~C~K,+K~D,K,+. . . ,  ( 3 . 1 6 ~ )  

C 3 = - 2 i 1 2 - 1 7 )  = K2A1LA+K3ClLC+K3D1LD+... . (3.16b) 

Thus, substituting for A,, C, and D, from (3.6),  the force and torque may be 
written as 

F,/477 = - #( U!&) - a - + K ~ Y ’ )  (1  + KKA) - K ~ (  !&: - +K/?’)  K ,  - @c3/3’KD + . . . , 
(3.17 a) 

T,/877 = - (a$ - $K/?’)  (1 + K 3 L c )  - #K2(  ui2 - LX - + K 2 y ’ )  LA - 9K4/?’LD + . . . . 
(3.17b) 

The coeEcients KA, K,, K,, LA, L,  and Lo are integrals over c which are of 
order KO, and are dependent only on the parameter s. I n  addition, /3’ = = O( 1) 
and y‘ = y/K2 = O(1). Equations ( 3 . 1 7 ~ )  and (3 .17b)  may be used to calculate 
the force and torque acting on a sphere which is translating and rotating a t  a 
known specijied rate in either Couette or two-dimensional Poiseuille flow. 
Alternatively, the force and torque may be specified and ( 3 . 1 7 ~ )  and (3.17b) 
used to determine the corresponding translational and rotational velocities UA:) 
and SzL:. 
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Present theory, 
S -L:KD 

0.10 - 30.834 
0.20 - 7.199 
0.25 - 4.315 
0.30 - 2.717 
0.40 - 1.018 
0.50 0.0 

Halow & Wills, 
& [ l / ( l - s ) 2 -  l / s 2 ]  Wakiya 

- 30.864 - 
- 7.324 - 
- 4.444 -4.315 
- 2.835 - 
- 1.085 - 

0.0 - 

TABLE 1. The slip velocity U,/V,K~ of a neutrally buoyant sphere freely suspended in 
a simple shear flow bounded between two walls, K D ( ~ )  = - K D( 1 - s). 

The specific case of primary interest in the present context is Fa = T, = 0, 
corresponding to a freely suspended neutrally buoyant particle. In  this case, 
it can be shown from (3 .17a)  and (3.17b) that 

uf2 - a = 4~2y '  -5!90-~3p'K D ,  (3 .18a)  

!&$ - BKp'  = -+K4p'Lg. (3.18b) 

Thus, the sphere rotates with the vorticity of the fluid to within a small correc- 
tion O ( K ~ ) .  I n  two-dimensional Poiseuille flow 

u = 4Vma,~(1 -s), p' = 4Vmax(1 - 2 ~ ) ,  y' = - 4Vmax. 

Hence, the slip velocity Up = U$$ - a becomes 

u 23 = - + V ~ , , K ~ - - ~ V ~ ~ ~ ~ ~ ( I  - 2 s ) ~ , + o ( K 4 ) .  (3.19) 

This expression is consistent with the similar result given in Happel & Brenner 
(1973, chap. 3)  for motion through a circular tube, and predicts that a small sphere 
(i.e. K < 1) will lag behind the surrounding fluid for all positions s. In  simple shear 
flow 

so that Up = - ~ c & K 3 K D + O ( K 4 ) .  (3 .20)  

We have numerically evaluated K D  for various values of s and the results are 
listed in table 1. It is evident that the sphere leads the fluid for s > 0.5 and lags 
behind it for s < 0.5. We note also the expected symmetry in K D :  

a = Vws, p ' =  v,, y' = 0, 

KD(s) = - K D ( 1 - 8 ) .  

These results for simple shear flow may be compared with the similar calculation 
of Wakiya (1956),  who solved the same problem but evaluated Up only for 
s = 0.25 and 0.75. As indicated in table 1, our calculated values are essentially 
identical to his a t  those values of s. More recently, Halow & Wills ( 1 9 7 0 4  used 
an ad hoc method in which the contributions of the two individual walls were 
summed to estimate the force acting on a sphere between two plane walls. The 
resulting formula for F, is 
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7- 

Present 
theory, 

s K A  

0.10 5.709 
0.20 3.073 
0.25 2.61 1 
0.30 2.338 
0.40 2.076 
0.50 2.008 

Halow & Wills, 

6.250 
3.516 
3.000 
2.679 
2.344 
2-250 

&[l/s+ 1/(1-8)1 

-7 

( 6 )  
r----h-. 

Present 
theory, 

L A  Faxen 
0.236 - 
0.286 - 
0.270 0.267 
0.235 - 
0.129 - 
0.0 - 

Wakiya 

TABLE 2. (a) Additional hydrodynamic resistance on a sphere translating parallel to two 
infinite plane walls, K A ( s )  = K A (  1 - s) ; and (6) the induced angular velocity, 

LA(s) =   LA(^ -8 ) .  

The corresponding values for U,/V,K~ are also listed in table 1 for the case in 
which F, = T, = 0. Sufficiently near the walls, s < 0.15 or s > 0.85, both theories 
reduce, in effect, to the motion of a sphere near a single plane wall and agreement 
between them is expected. Surprisingly, however, the simple addition of the two 
single-wall corrections gives results which compare quite well with our present 
'exact' results for all values of s. 

Although not required in the present context, it is also of general interest to 
use (3 .17~)  and (3 .17b)  to calculate the force and torque on a sphere which is 
translating in the x direction and/or rotating in the y direction between two 
infinite plane walls in a quiescent fluid. In these circumstances, since 

a = pf = y f  = 0, 

F, = - 6 ~ U i $ (  1 + KKA) - 4TK2!J21p,) Kc, (3 .22~)  

T, = - 8n!&o,'( 1 + K3Lc) - 12TK2uL$ LA. (3.22 b )  

In particular, a freely rotating sphere which is rising (or settling) through a 
quiescent fluid will experience the usual Stokes drag force modified by the 
additional term K K ~ ,  and in addition will undergo an induced rotation at  a rate 

Q(O) sy - - ...aK2u(O)LA. 2 sx (3 .23)  

The coefficients KA and LA are listed in table 2 for various values of s. The values 
of the term corresponding to K A ,  i.e. &[1/s + i/( 1 - s)], from the approximate 
method, equation (3.21), are also listed in the same table. Wakiya (1956) and 
Faxen (see HappeI & Brenner 1973, chap. 7) also reported the coefficients K A  
and LA for s = 0.25 and 0.75 (see table 2). 

4. Solution for (u,p) 
We now consider the creeping motion of a rigid sphere which is translating 

in a quiescent fluid between two parallel plane boundaries in the direction 
perpendicular to them. This velocity field (u,p) is required in the integral 
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expression (2.21) for the lateral force. The method of solution is identical to 
that of the preceding section, hence only the results will be given. We express 

u = u1+u2+u3+ ... 
= 131+132+p3+ ... . 

The solution u, satisfying the boundary condition on the sphere, i.e. u, = e, 
a t r =  1,is  

( 4 . 2 ~ )  b) 

( 4 . 2 ~ )  

and A ,  = -#, B, = -3. (4.3) 

Using (3.8), an integral form for u, can be obtained in terms of the outer variables 
x', y', z' and r ' :  

(4.4c) 

where fl = ~A1/45, f2 = - * K ~ B ,  5. ( 4 . 5 ~ )  b) 

Again, u2 is assumed to have the form u2 = (uz, v2, wz), with 

( 4 . 6 ~ )  

v2 = &Jmm/w - m  exp(ifi)(exp(-A) [2Y3+;f4] +exp(A) [zY5-;f6]) 2 d f d 4 ,  

w2=-'/m 2?r -m IW - m  exp(ifi){exp(-~)[f,+f4+~f,l 

(4.6b) 

+ exp (A) [ f 5  + f 6  - d6 dq* (4*6c) 

The coefficients f 3 ,  f4, f 5  and f s  are found by satisfying the boundary condition 
u1 + u2 = 0 on the walls z' = - s and z' = 1 - 8. As before, the detailed results 
are omitted (see Ho 1974) while the expressions to the lowest order in K are 
givenin $5. Again, f 3 ,  f4, f 5  and f6 are found to be dependent on 6. Near the sphere 
u2 can be simplified to the form 

(4.7a, 6 )  U2 = - 4 K J . X  + o ( K 3 ) ,  V2 = - 4KJ2Y + o ( K 3 ) ,  

w2 = - (J1+ J4) + K J ~ Z  + 0 ( K 3 ) ,  (4.7c) 

where 

J 
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S 

0.1 
0.2 
0.25 
0.3 
0.4 
0.5 

K A  +[1/8+ 1/(1-s)l 
11.2 12.50 
5.65 7.03 
4.560 6.000 
3.864 5.357 
3.117 4.688 
2.902 4.500 

TABLE 3. Additional hydrodynamic resistance on a sphere translating 
perpendicular to two infinite plane walls, K A ( s )  = Ka(1-s) .  

Hence, the solution u, satisfying the boundary condition u2 +us = 0 on r = 1 is 
the same as (4.2) with A,  and B, replaced by A, and B,, where 

This completes the solution to the order of approximation required for our 
purposes. 

As in the previous case, the force acting on the particle can be calculated from 
the coefficients A, and A, for any given imposed velocity. The torque is identically 
zero. The general form for the force is 

F, = 4n(A,+A,+ ...). (4.10) 

Hence, substituting for A,  and A, from (4.3) and (4.9), and noting that 

A 3 = - - S ( J  2 1 + J 4 )  = KA,KA+K~B~KB,  (4.11) 

we obtain F,/677 = - ( l f ~ K _ ~ ) ,  (4.12) 

where the coefficient K ,  is an integral over cwhich is O( I )  in K ,  and is a function of 
the single parameter s. Thus, to a first approximation we obtain the usual Stokes 
force, with a correction O(K)  due to the presence of the walls. The coefficient KA 
is listed as a function of s in table 3.  So far as we are aware, the only directly 
comparable results for two walls are from the study of Halow & Wills (1970a), 
who approximated the drag force as the sum of two single-wall calculations. This 
approach yields 

5 677 = - [I + # K  (;++--], (4.13) 

which is to be compared with (4.12). We have listed the correction term from 
(4.13) in a form comparable with the coefficient KA in table 3.  Unlike the previous 
example, where the ad hoc method of Halow & Wills produces reasonably accurate 
results, the comparison in this case is very poor with the values of the exact 
calculation being as much as 50 yo lower than the values from (4.13). As one would 
expect, the greatest differences occur near the centre of the gap, where the 
influences of the walls are comparable. When the particle is close to one wall, 
the influence of the other is apparently weak and the one-wall approximation is 
adequate. 
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5. The lateral force 
To calculate the lateral force, the volume integral (2.21) must be evaluated 

using the velocity fields v(O) and u of the preceding two sections, i.e. we require 

where V, is the fluid volume outside the sphere and bounded between the walls: 

V, = (rlr s 1, n: < co, y < co, - S / K  6 z 6 ( I - s ) / K } .  

Motivated by the fact that the lower limit of integration is O(1) while the upper 
limit is O( I /K) ,  we divide the region of integration into two domains V, and V, 

(5.1) 
such that 

( 5 . 2 )  

V, = (rl1 Q r < A K X - ~ } ,  

V, = (rlhKX-1 6 r < 00, - S / K  < z G ( ~ - s ) / K ) ,  

where 0 < x < 1 and h is a constant of order KO. Hence 

(5.3) 

Let us now investigate the magnitude of the first integral in (5.3). The solutions 
of the previous two sections and the general form (2.2) of the undisturbed flow 
field give the following orders of magnitude in K and the radial position r :  

u = u,+u,+u3+ ..., 
U, - o(i/r) + 0 ( 1 / ~ 3 ) ,  

u, N O ( K ) + O ( K + ) +  ..., 

u3 - 0 (:) + 0 6) + 0 6) + 0 F) + . . ., J 

4 0 )  0 (;) + 0 (;) + 0 6) + 0 6) + 0 C) + 0 (S) + . . .,I 
v&O) - o(~3) + o(~4.r) + . . . , 

4 0 ’  0 g) + 0 6) + 0 6) + 0 6) + . . ., 
v N O ( K T )  + O(K2r2). 

It follows, therefore, that the integrand behaves as 

1 u.f  - K 2 0 ( ? ,  p, 7) ( @’ r3’  ?.4’ . * ‘  

I l l  
+ K 3 0  - - - +.... 1 1 1  

(5.4u) 

(5.46) 

(5.4e) 

( 5 . 5 )  

It can be shown that the volume integral over a spherical shell (i.e. 1 < r < AKX-I) 

of the first term in ( 5 . 5 )  is identically zero. Thus, the dominant term derives from 
the term of order ~ 3 / r ~  in the integrand and the magnitude of the integral over 
V, is 

I v 1 U . f d V  = O(Kx+’). (5 .6 )  
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Now let us investigate the second integral in (5.3). Here, in estimating the 
magnitudes of the various velocity fields, i t  is convenient to use the outer 
variables X I ,  y‘, z’ and r’. It is then easily shown that 

u1 O ( 4 ,  u2 O ( K ) ,  u3 - O ( K 2 ) ,  (5.7) 

viol - 0 ( ~ 3 ) ,  V ~ O )  N o ( K 3 1 ,  via) N 0(~4),  (5.8) 

v N O(1).  (5.9) 

Hence, neglecting terms O ( K ~ )  and smaller, the second volume integral of (5.3) 
can be written as 

u.fdV = - ~ e ~ - ~ / v z ( u l + u , ) .  [ ( v i o ) + v ~ ) ) . ~ v  
- 

+ V . V ( V ~ ~ ) + V ~ ~ ) ) ] ~ V + O ( K ~ ) ,  (5.10) 

where the velocities are expressed in outer variables and V, is the volume element 

AKX < r’ defined by 

and XI < co, y‘ < co, -8 < 2’ < (1-s). (5.11) 

Now, the dominant term in the integrand of (&lo), as r’ + 0,  is O ( K ~ / ~ ’ ~ ) ,  hence 
if the lower limit r‘ = AKX were replaced by r‘ = 0,  an error would be introduced 
which would be of the same order of magnitude as the contribution from V,, 
i.e. ~ - ~ j O ( ~ ~ / r ’ ~ ) d r ’ ~  = O ( K ~ + ~ ) .  But the volume integral over V, is of order K ~ ,  

hence to a first approximation, it is permissible to put r’ = 0 as the lower limit 
and neglect the integral over V, entirely. We note that the resultant expression 
for F’, equation (5.10), involves only u1 and u,of u, via) and viol of v@), and a single 
term of V. Let us rewrite these various velocity fields (in terms of outer variables 
x’, y‘, z’ and r’). First, u is given by u = u1 + u2, with 

u1 = (u1, %%), 
u1 = K 32’2’/4~’~ + O(lc3), v1 = K 3y’z’/4rr3 + O ( K ~ ) ,  (5.12a, b )  

( 5.1 2 c) 
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and 

pf2 = X ’ ~ + Y ’ ~ ,  t = expc, t,  = expsy, t, = exp[(l-s)c], A = (t- l)2-c2t,  

W = $ 5 ~ ‘  and the J,( W )  are Bessel functions of the first kind of order n. 
Second, v(O) is given by v(0) = via) + via), with 

v p  = (up ,  w p ,  wp), 

(5.15 a) 

(5.15b) 

(5.15~) 

with D, = - ~ B ’ K ,  A ,  = - #( U$$ - a - Q Y ’ K ~ )  and C, = - (0:: - ~ P ’ K ) .  Hence, from 
(3.18)) it follows, for a freely suspended neutrally buoyant sphere, that 

A ,  = $@‘K3KD and cl = +P‘K4LD, 

so that, in (5.15), the term involving D, is O(lc3), the term involving A ,  is O ( K ~ )  
and the term involving C, is O ( K ~ ) :  

(5.16 c) 

The velocity field vho) is given by 

(5.17 c) 

Here, g&), g5(6), . . . , g&) are expressible in terms of gl, g2 and g,, which are given 

KA KA, K ~ D , X ’  g, = --- g - --1+..., 
2 -  45 45 8lz’I + * * * *  

(5.18 a)  

(5.18b, c) 
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For a neutrally buoyant particle, the term involving D, is O ( K ~ ) ,  the term in- 
volving A ,  is O ( K ~ )  and the term involving C, is O ( K ~ ) ;  then it can be shown that 
to the lowest order in K 

(5.1911,) 

(a. 1 S d )  

5K3/3’ t,+ 1 +S< 1 
-- [(tl + 1) ( t  - 1)  - 2S<t1 - ( 2  - s )  <t - 2( 1 - s) &t - s<] ”=-8( t - I  A 

c2 LS2tt, + zs(i - S) t, t f- t 2  + (I - s)2 t, t 2  - s2gt - S( I - 6 )  gtq + 0 ( ~ 4 ) ,  

(5.19e) 
I _- 

A(t - 1) 

g9 = ( - 5 K 3 p ’ / 2 4 A )  [(t, + 1) (t-  1) - Sct, - <t - (1 - S) &t + S c 2 t ]  + o ( K 4 ) .  (5.19f) 

Finally, the undisturbed velocity field V is 

V = (P’z’ + ?Id2) e, + O ( K ~ ) .  (5.20) 

It may now be seen from (5.15) and (5.16) that the dominant term in the ex- 
pression (5.10) for neutrally buoyantparticles is due to the stresslet (D,, determined 
by the bulk rate of strain) and its reflexion off the walls. The Stokeslet contribution 
(Al, originating from the lag velocity) and the couplet contribution (C,, originating 
from the rotation slip) are of one and three orders of magnitude smaller in K ,  

and hence may be neglected for this case. From this, one can conclude that the 
lateral force originates from the shear field acting on the sphere rather than the 
presence of a wall-induced lag velocity or slip-spin. On the other hand, it should 
be pointed out that for the special case of a non-rotating sphere, where C, = &q3‘, 
the stresslet and couplet terms are of same order of magnitude. Similarly, if 
the lag velocity were significantly larger, as might be the case for a non-neutrally 
buoyant sphere, the contribution of the Stokeslet term might generate a lateral 
force of comparable or even larger magnitude than that determined here. 
Indeed, it is clear from (5.15) and (5.16) that a suitable criterion for neglect of 
the contribution to  the lateral force induced by the body force (for a vertical 
flow channel) is 

[~2D,l B IKA,~ or lAll < K ~ P ‘ .  (5.21) 
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An explicit requirement for the case where Tu = 0 follows immediately from 
( 3 . 1 7 ~ )  and (3.17b), which yield 

A,  = (Fz/4~+$~3P'KD) (1  + o ( K ) ) .  

That is, we require lFs/4nl < ~ ~ 1 ' .  (5.22) 

When the body force is gravity, (5.22) becomes (in dimensional quantities) 

a21Ps-Pol g P o E e  (5.23) 

in which g is the gravitational acceleration, ps is the density of the particle, po 
is the density of the suspending fluid and V; is the dimensional mean flow rate, 
being equal to +V: for simple shear flow and VgaX for two-dimensional Poiseuille 
flow. 

We have used the various estimates (5.12)-(5.20) to evaluate the expression 
(&lo), leading to the lateral force FL. As indicated previously, the lower limit 
for the radial variable rr  in V, was 0 and the contribution from V, was neglected 
completely. The volume integrations over V, were carried out analytically, 
however the various integrations with respect to 6 were determined numerically 
for various values of s. The general form found for FL is 

PL = K2Re [PfzGa,(s) +/3'y'G,(s)], (5.24) 

with the convention that a positive force is in the direction of increasing s while 
a negative force is in the opposite direction. The functions G,(s) and G,(s), which 
are independent of the detailed undisturbed flow, were evaluated numerically 
for various values of s and are listed in table 4. It is found that 

G,(s) = - Gl(1 -s), GJs)  = GZ(1 -s), (5.25) 

and G,(s) is positive for 0 < s < 0-5 whereas G,(s) is always positive. The general 
expression (5.24) for the lateral force is applicable to all undisturbed flow fields 
of the form a -t- P'z' + y ' P .  

A careful examination of (5.24) indicates the following general behaviour of 
the individual terms. The first term, which is the interaction of the disturbance 
stresslet and its wall correction with the bulk shear (hence proportional to P Z ) ,  

in all cases produces an inward force which tends to cause migration toward the 
centre-line s = 0.5. The second term, which is the interaction between the Stresslet 
and the curvature of the bulk velocity profile (hence proportional to By), tends 
to cause migration in the direction of increasing (absolute) shear rate. For every 
example of two-dimensional shear flow a +P'z' + y'd2 involving either moving 
walls, an imposed pressure gradient or a combination of these, the region of 
largest shear is near one (or both) of the walls. 

Reverting to dimensional variables and substituting for P' = V, = 2Vm and 
y' = 0 in (5.24), the lateral force for simple shear flow is thus 

pg = po  ~ ~ z ~ a " ~ 2 [ 4 G l ( ~ ) ] ,  (5.26) 

which is plotted in figure 2. Hence, for this case, the lateral force is in the positive-z 
direction for 0 < s < 0.5 and in the negative-z direction for 0.5 < s < 1.0. Thus, 
a stable equilibrium position for the sphere in a simpIe shear flow between two 

25 F L I  65 
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S GI G,  S GI 
0.50 0.0 1.072 0.25 0.885 
0.49 0.0419 1.070 0.24 0.907 
0.48 0.0837 1.088 0.23 0.927 
0.47 0.1254 1.066 0.22 0.945 
0.46 0,1669 1.062 0.21 0.960 
0.45 0.2080 1.056 0.20 0.973 
0.44 0-2489 1.050 0.19 0.982 
0.43 0.2894 1.042 0.18 0.988 
0.42 0.3293 1.033 0.17 0.990 
0.41 0.3688 1.023 0.16 0.988 
0.40 0.4077 1.012 0.15 0.981 
0.39 0.4459 1.000 0.14 0.971 
0.38 0,4834 0.987 0.13 0.957 
0.37 0.520 0.972 0.12 0.943 
0.36 0.556 0.956 0.11 0,931 
0.35 0.591 0.940 0.10 0.927 
0.34 0.626 0.922 0.09 0.940 
0.33 0.659 0.902 0.08 0.982 
0.32 0.691 0.882 0.07 1.07 
0.31 0.723 0.861 0.06 1.23 
0.30 0.753 0-838 0.05 1.50 
0.29 0.782 0.815 0-04 1.93 
0.28 0.810 0.790 0.03 2.58 
0.27 0-836 0.765 0.02 3.59 
0.26 0.861 0.738 0.01 5.33 

TABLE 4. Values of GI and G,; G,(s) = - G,(1 -s) ,  G,(s) = G,(1- 

G2 
0.711 
0.683 
0.654 
0.625 
0.596 
0.566 
0-536 
0.506 
0.477 
0.448 
0.420 
0.393 
0.368 
0.345 
0.324 
0.306 
0.292 
0.282 
0.278 
0,280 
0.291 
0.315 
0.354 
0.414 
0,505 

8). 

plane wallsis the centre-line s = 0-5, where G,(s) = 0. This value agrees reasonably 
well with the experimental observations of Halow & Wills (1970a, b ) ,  who found 
a stable equilibrium position between s = 0.5 and 0.55 in a concentric-cylinder 
Couette flow. In  the next section, we shall show that the slight apparent dis- 
crepancy in these two results is due to the curvature of the Couette flow streani- 
lines. 

For the case of two-dimensional Poiseuille flow, where /3' = 4VmaX( 1 - 2s) and 
y f  = - 4Vmax, the dimensional expression for the lateral force is 

F: = po V $ 2 ~ 2 ~ 2 [ 3 6 ( 1  - 2 ~ ) ~  G,(s) - 36(1 -  2s) G2(s)], (5 .27)  

which is also plotted in figure 2. Clearly the portion /3f2G,(s) of the force which 
involves the square of the shear rate tends to push the sphere to the centre, 
while the term P'yfG2(s), which involves the product of the shear rate and its 
rate of change, is negative for 0 < s < 0.5 and the positive for 0.5 < s < 1, thus 
opposing the effect of the first term. There are three positions where the force F, 
is zero: the centre-line (s = 0-5), which is unstable to slight perturbations, and 
s = 0.2 and 0.8, which are stable equilibrium points. Unfortunately, the only 
available experiments for two-dimensional Poiseuille flow, those of Repetti & 
Leonard (1966) and of Tachibana (1973), are somewhat inconclusive with regard 
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FIGURE 2. Lateral force Fi/po  V:a2~a as a function of lateral position. 
-, simple shear flow; - - -, two-dimensional Poiseuille flow. 

to the equilibrium position. In  Repetti & Leonard’s experiments, the particles 
were never quite neutrally buoyant. Rewriting the criterion (5.23), we require 

Ips-Pol Po V?3d2g- 
Using the maximum viscosity and velocity estimates of 1OcP and 2cm/s, 
,uoV:/d2g N for Repetti & Leonard’s experimental set-up. On the other hand, 
the density differences were never measured more accurately than to within 
5 10-4. The fact that the particles were never really neutrally buoyant may 
explain why Repetti & Leonard were unable to obtain reliable and conclusive 
results for the equilibrium position with their ‘neutrally buoyant’ spheres. The 
equilibrium positions reported by Tachibana (1973) also exhibit a great deal 
of scatter. However, Tachibana presented sphere trajectories only for two cases 
with equilibrium positions of s = 0.2 and 0.8, which, for reasons that are not 
clear from his paper, he apparently felt to be the most reliable. 

These equilibrium values agree perfectly with the present theoretical pre- 
dictions. 

25-2 
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Finally, it is interesting to note that the predicted equilibrium positions for 
two-dimensional Poiseuille flow are precisely equivalent to the value measured 
in a circular tube by Segr6 & Silberberg (1962a, b). 11.1 addition, the form (5.27) 
for F z  in this case is essentially the same as Segrk & Silberberg‘s empirical estimate 
(cf. the discussion by Brenner 1966, p. 381). 

6. Particle trajectories 
It is of interest to use the result for the force to calculate the trajectories of 

the sphere. I n  particular, the calculated sphere trajectories can be compared 
with available experimental results reported in the literature. The lateral velocity 
has been found to be given in dimensional form by 

in which G(s) is given by G(s )  = ~ G , ( S )  
for simple shear flow and by 

G(s)  = 36[( 1 - ~ s ) ‘ G ~ ( s )  - (1  - 2s) Gg(s)] (6.26) 

for two-dimensional Poiseuille flow. The sphere trajectories can be expressed in 
terms of the lateral position of the particle either as a function of time or as 
a function of axial position in the flow channel. Since the lateral velocity Ui:’* 
can be expressed as 

ds 
dt* 6np0 

Re (Ji:)* = d - = ~ 3 G ( s )  

and the axial velocitv as 
u$z* = d dX’ldt* = a! + O ( K 2 ) ,  

the trajectory equation may be expressed either as 

or equivalently 

For the time trajectory, we have for both simple 
Poiseuille flow 

16.5) 

(6.6) 

shear and two-dimensional 

and for the axial-position trajectory in the simple shear flow case 
(a = VZs = 2Vms), * 

we have 

while in the two-dimensional Poiseuille flow case 

(a = ~ V ~ , , S ( ~ - S )  = ~ V ; S ( ~ - S ) ) ,  

(6.7) 
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FIGURE 3. Particle trajectory for simple shear flow: lateral position ws. 
{ ( a )  time and ( b )  axial position. 
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FIGURE 5. A comparison of experimental particle trajectories (Tachibana) in two- 
dimensional Poiseuille flow with the present theory: 0, experimental (Tachibana); 
- , present theory. In (a), the lateral position 8 is plotted ws. 8x'[(po Vzd/,uo) 81;  and 
in (b )  the lateral position s is plotted 218. x' with povmd/po = 32.1 and K = 0.0795. 

For simple shear flow, the particle trajectories (6.7) and (6.8) are plotted in 
figures 3(a)  and (b)  with so taken to be 0.01 and 0.99. The time trajectory is 
symmetric about s = 0.5 while the axial-position trajectory is not. For two- 
dimensional Poiseuille flow, (6.7) and (6.9) are plotted in figures 4(a)  and (b).  
Since in this case both time and axial-position trajectories are symmetric about 
s = 0.5, only so = 0.01 and 0.49 are considered. The main feature of interest for 
Poiseuille flow, which we shall discuss a t  greater length in the following section, 
is the skewness of the trajectories in the sense that spheres near the wall clearIy 
migrate more rapidly than those near the centre for a given average flow rate 
V: in a given fluid. This feature reflects the larger lateral force associated with 
the region nearest the wall. 

For the reasons discussed in the previous section, the trajectories of Repetti & 
Leonard (1966) cannot be compared with our present theory. The only available 
experimental results are those of Tachibana (1973) and Halow & Wills (1970a, 6 ) .  

Tachibana (1 973) studied the migration of neutrally buoyant rigid spheres in 
two- and three-dimensional Poiseuille flow. Particle trajectories giving lateral us. 
axial position were measured for the two cases cited earlier in which the equi- 
librium positions were s = 0-2 and s = 0.8. These trajectories are reproduced in 
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figures 5 (a )  and ( b )  together with corresponding trajectories predicted by the 
present theory. The agreement between observation and theory is remarkably 

Halow & Wills’ experimental investigation of sphere migration was carried 
out in a Couette flow system in which the inner cylinder was rotated and the 
outer cylinder was held fixed. For gap widths small compared with the cylinder 
radius the flow may be approximated as a simple shear flow. Extensive results 
are given in the thesis of Halow (1968) and our comparison is drawn from this 
source. As we have indicated earlier, Halow (1968) found the equilibrium position 
to be close to the centre-line between the two walls, but also somewhat closer 
to the inner moving wall, corresponding to a value of s between 0.5 and 0.55 
in our present nomenclature. We believe that the slight discrepancy between 
these values and the predicted value of 0-5 is due to the fact that the Couette 
flow in Halow’s apparatus corresponds only approximately to a simple shear 
flow. In  fact, the ratio 2d/(r,+r2) has values of 0.1, 0.17, 0.22 and 0-3 in his 
experiments, where rl and r2 are the inner and outer cylinder radii. The case 
corresponding to the value 0.1 is the nearest to simple shear flow, however, in 
this case the shear rates are too large to be compared with the present small- 
inertia expansion. The case 0.17 has sufficiently small shear rates; however, 
the flow is slightly different from a simple shearing flow. 

I n  order to provide a detailed comparison with the data of Halow (1968), 
we therefore modify the analysis which is presented in the previous sections for 
simple shear flow to include the effects of curvature in the velocity distribution. 
Hence, instead of assuming simple shear flow, let us write an exact expression 
for the tangential undisturbed velocity field with co-ordinate axes fixed at the 
centre of the particle: 

good. 

(6.10) 

Here, V: is the tangential velocity of the inner wall, s is the non-dimensional 
lateral position of the sphere measured from the outer wall, z* is the lateral 
position measured from the sphere centre and r (dimensional) is the radial 
position measured from the centre of the coaxial cylinders. Thus, the factor 
T1(r2+r)/r(r2+rl) provides a correction of the simple shear flow profiIe for the 
Couette geometry. Provided that 2d/(r1 + r2)  is small, we can write 

or 

(6.11) 

(6.12) 
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-I - 10.0 

FIGURE 6. A comparison of the lateral force for simple shear flow with that for 
Couette flow. - - -, simple shear flow; ---, Couette flow with R = 0.1. 

The deviation of the Couette flow profile from simple shear flow depends on the 
parameter R = r2(r2 - r1)/r1(r2 + rl). We can express the tangential velocity in 
dimensionless form as 

where 
v = a + p’z’ + y‘2’2, 

a = ~ s [ l - R ( l - s ) ] ,  p ’=G[ l -R( l -2s ) ] ,  y ’ =  V,R. (6 .13aYb ,c )  

Hence, our general result (5.24) can be used to calculate the force 

3’’ = Re K2[p’2Gl(s) +,8’y‘G2(s)]. 

We have plotted the result for the force with the parameter R = 0.1 (corre- 
sponding to  the case of 2d/(r,+ r2)  = 0.17) in figure 6. Also shown is the force for 
simple shearing flow. The equilibrium position is seen to be shifted to s = 0.53. 
The corresponding sphere trajectory, in the form of lateral position us. time, is 
plotted in figure 7. On the same figure are the experimental results of Halow 
(196s)  for the corresponding case in which the gap width d is 9.48 mm and 
R = 0.101. Again reasonable agreement between theory and experiment is found. 
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1 .o 

s 0.5 

FIGURE 7. A comparison of experimental particle trajectories (Halow) in Couette flow 
with the present theory (solid line). In the results of Halow, d = 9.48 mm, r2 = 60 mm, 
rl = 51 mm and R = 0.101. The following points and numbers correspond to different 
sphere radii reported in the thesis of Halow: 0, 5, 6 (a = 0.8495 mm); 0, 11, 12 
(a = 0-8495mm); ., 15, 16 (a = 0.636 mm); a, I9 (a = 0.735 mm); 0, 20(a = 0437mm); 
V, 25, 26 (a  = 0.296 mm); 0 ,  27, 28 (a = 0.296 mm). 

7. Flow of a suspension of rigid spherical particles which undergo 
translational Brownian motion 

As a specific application of the results of the preceding sections, we consider 
the motion of a dilute suspension of rigid spheres which are simultaneously 
undergoing inertia-induced lateral migration and translational Brownian motion. 

Of course, the preceding results have been derived for a singZe sphere in 
a given bulk flow, and it is necessary to investigate the circumstances in which 
the lateral force calculated for that case is applicable to a particle in a suspension 
of many particles. We have seen that the role of the walls is critical in the migration 
phenomenon and acts essentially by modifying the inertial behaviour of the 
Aow. In addition, the walls also cause the sphere to have translational and rota- 
tional velocities different from those of the surrounding fluid, but the lateral 
force induced by this difference is smaller by O(K) .  If we now consider two spheres 
present in the bulk flow, it is clear that the modification of the inertial behaviour 
of the fluid would not be changed significantly from the single-sphere case 
because the second sphere constitutes the addition, in effect, of a boundary 
infinitesimally small compared with the infinitely unbounded walls. In  addition, 
each sphere would also translate and rotate in creeping motion at different 
velocities as compared with a single sphere. This difference is of order (a /d)  (a/Q2 
for translational motion and (a/d)  (a/Z)3 for rotational motion, 1 being the inter- 
particle distance (see Wakiya, Darabaner & Mason 1967; Batchelor & Green 
1972). However, we have previously shown that the lateral force will not be 
affected unless the translational and angular velocities of the sphere are changed 
to order (a/d)2anda/d respectively [cf. (5.15)]. Hence, the conditions for neglecting 
two-particle inertial migration compared with the single-particlelwall migration 
are (a/1)2 < a/d, (a/Z)3 < 1. (7.1a, b )  
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For a dilute suspension of Concentration @ ( N a3/Z3), the condition (7.1 b )  is 
automatically satisfied and (7.1 a )  becomes 

a2 < K3. (7.2) 

In  addition to two-particle inertial migration, it is possible that three-particle 
interactions may cause migration even a t  zero Reynolds number since the 
collision process is not reversible. Since three-particle interactions have a prob- 
ability of occurrence O( W), a conservative condition for the neglect of this effect 
relative to wall-induced single-particle inertial migration is <D2 < ~2 Re, or since 
Re K ~ ,  

a2 K4. (7 .3)  

Hence, if the conditions (7.2) and/or (7.3) are satisfied, it may be assumed that 
the lateral force on a particle in a suspension is equal to that on a single sphere 
immersed in the fluid. 

Here, we consider the concentration distributions, flow behaviour and 
effective viscosity of a suspension of uniformly sized rigid spheres undergoing 
lateral migration with siniultaneous Brownian translation in simple shear flow 
and two-dimensional Poiseuille flow. The concentration distribution is established 
as the result of a coinpetition between the lateral migration force, which tends 
t o  Cause the particles to crowd to a preferred position, and Brownian motion, 
which tends to cause a uniform dispersion across the channel. For our present 
purposes, we consider only the simple situation of steady bulk flow in which the 
concentration distribution has achieved its final, steady-state configuration. 

The governing equation for the steady-state probability density function @($) 
for concentration can be written as 

d[@( U& + Re U z ) ] / d g  = 0. (7.4) 

Here Uzr represents the effective lateral velocity due to the action of Brownian 
diffusion in the presence of a concentration gradient, i.e. 

where k T / 6 n p 0 a  is the translational Brownian diffusion coefficient, with k as 
the Boltzmann constant and T the absolute temperature. The velocity in the 
z direction induced by inertia is 

Re l72 = F z ( s ) / 6 ~ p ~ a .  (7.6) 

It should be noted that each of (7.5) and (7.6) is only a first approximation in K .  

The solution of (7.4) with (7.5) and (7.6) is simply 

where am is the mean concentration 
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FrGuRE 8. Concentration distribution CD(s)/CD., for various K in (a) simple shear flow and 
( b )  two-dimensional Poiseuille flow. 

and the lower limit of the integral of F:(s’) is taken to be + for convenience. 
Substituting the general form for F;, i.e. 

F:(s) = po V ~ ~ U ~ K ~ G ( S ) ,  

and defining the parameter K = po Vg2a4/dkT, the concentration distribution 
function may thus be expressed as 

The function @(s) is plotted with K as a parameter in figures 8(a )  and (b ) .  Since 
the distributions are symmetric about s = 0.5, only half of the channel width is 
considered. Clearly K w 10 is inertia controlled whereas K N 0.01 is diffusion 
controlled, these cases corresponding, respectively, to sharply peaked and nearly 
uniform concentration distributions. 

Provided that (7.2) and/or (7.3) are satisfied even at the most concentrated region, 
the local effective viscosity at any position s may be calculated using the classical 
formula of Einstein 

(7.9) A s )  = Pol? + W S ) l .  
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There is an additional correction term due to the presence of inertia. For example, 
in an unbounded system, Lin, Peery & Schowalter (1970) have shown that the 
correction is O(Re8). For small Reynolds number, we can neglect this correction 
and consider only the correction due to a non-uniform particle distribution. 
Since @ depends upon s, so does p, and the velocity profiles for the suspension 
as a whole will differ slightly (by 0(aD,)) from their simple form for a fluid of 
constant viscosity. This change may then be reflected in the relationship be- 
tween the pressure drop and flow rate (APIL versus &) for the Poiseuille flow, 
and in the relationship between the applied force 3’; and wall velocity V: for 
simple shear flow. Hence, an investigator measuring AP/L and Q, or FZ and V z  
as a viscometric measurement for an assumed purely viscous fluid of uniform 
viscosity would be led to conclude the existence of non-Newtonian behaviour 
since @(s) changes as a function of the flow rate. The equations for a steady-state 
unidirectional velocity field in the case of spatially varying local viscosity are 
simply 

= 0;  u =  0 a t  s =  0;  u =  V; a t  s =  1, (7.10) 
ds 

for simple shear flow, and 

ds d [p(s);] = (r) AP d2; u = 0 on the walls, 
(7.11) 

for two-dimensional Poiseuille flow. By solving these equations, the modified 
velocity profiles can be shown to be 

(7.12) 

for simple shear flow and 

= [1 - (1 - 2 ~ ) ~ ]  3[1- (1 - 2 ~ ) ~ ]  (1 - 2 ~ ’ ) ~  @(s’)ds’ 8 V” 
2 m  

for two-dimensional Poiseuille flow. If @(s) = om, these expressions reduce to 

u(s)/v: = s, (7.14) 

u(s)/$v; = 1-(1-2s)2,  (7.15) 

which are the appropriate velocity profiles for a fluid of constant viscosity. 
For simple shear flow, the correction term, (7.14) subtracted from (7.12), 

- soD,- @(s‘)ds’ 
2 7 I O S  1 (7.16) 

is positive for 0 < s < 0.5 and negative for 0.5 < s < 1, and it is odd about 
s = 0.5. Thus, from (7.121, the suspension moves more rapidly near the fixed 
wall and more slowly near the moving wall as compared with (7.14). For two- 
dimensional Poiseuille flow, the correction term, (7.15) subtracted from (7.13), 

(1 - 2 ~ ’ ) ~  @(s’) ds’- 4 (1 - 2s’) @(s‘) ds’ (7.17) I 
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FIGURE 9. Correction term in velocity profile for (a) simple shear flow, equation (7.16), and 
( b )  two-dimensional Poiseuille flow, equation (7.17). 

is negative for 0.22 < 5 < 0.78 and positive for 0 < s < 0.22 and 0.78 < s < 1, 
and is even about s = 0.5. Thus, the resulting motion (7.13) is more rapid near 
the walls and slower near the centre as compared with (7.15). These correction 
terms (7.16) and (7.17) are plotted in figures 9(a) and (6) for various values of K .  
We have also plotted the resulting velocity profiles corresponding to (7.12) 
and (7.13) in figures 10 (a)  and (b) for K = 2 and Qrn = 0.1. Although the present 
small-@ theory is not expected to hold at  a value of Dm as large as this, this 
value does allow the predicted corrections to be discernible on the scale of the 
bulk flow field. The most interesting feature evident in this figure is the flattening 
of the velocity profile for the case of two-dimensional Poiseuille flow. 

It is of greatest interest to calculate the apparent viscosity papp, which would 
be measured by interpretating force/wall velocity or pressure drop/flow rate 
data as though the particle concentration was uniform, and the suspension 
therefore Newtonian with a constant Viscosity. For simple shear flow, this 
apparent viscosity may be expressed as 

(7.18) 

where 3'; is the applied force (equal also to the force required to keep the 
stationary wall fixed) and V z  the velocity of the moving wall. Similarly, for a two- 
dimensional Poiseuille flow, the apparent viscosity is 

~ a p p  = -i$(AP/L) d3/Q, (7.19) 

Papp = F z  d/ v;, 
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FIGURE 10. Velocity profile for (a) simple shear flow and ( b )  two-dimensional Poiseuille 
flow. - - -, uniform particle distribution; - , non-uniform particle distribution with 
K = 2. CI, = 0.1. 

where APIL and Q are the measured pressure gradient and volumetric flow 
rate. Using the velocity profiles (7.12) and (7.13), plus the expression (7.9) for 
the effective local viscosity, we evaluate (7.18) and (7.19) to obtain the results 

~ a p p  = PO[’ + g@rn + O(Q,$)I 
for simple shear flow and 

(7.20) 

(7.21) 

for two-dimensional Poiseuille flow. Thus the apparent effective viscosity will 
be independent of the flow rate (shear rate) and equal to the Einstein value with 
Q, replaced by Om for simple shear flow, but distinctly flow-rate dependent 
(‘ non-Newtonian ’) for two-dimensional Poiseuille flow. We have plotted the 
expression (7.21) for papp as a functionof the flow-rate parameter K in figure 11. 
The deviation from the simple Newtonian value corresponding to a uniform 
concentration distribution ( K  = 0 )  first decreases with K but then for K > - 0-5 
increa,ses monotonically towards the approximate asymptotic value 

Although this behaviour may appear unusual and a t  variance with the available 
data of Segri. & Silberberg (1963), it is easily understood on the basis of the 
present theory. I n  a non-uniform shear flow, the contribution which a given 
particle makes to the dissipation of energy (and hence to the effective viscosity) 
depends on the square of the local velocity gradient. A particle near the wall, 
for example, contributes a greater fraction of the overall rate of dissipation 
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FIGURE 11. Reduced viscosity ~(pc,,,/po - 1)/@, 08. K for 
two-dimensional Poiseuille flow. 

than does a particle which is near to the centre-line, where the local shear 
rate is small. In  addition, we have seen (cf. figure 2) that the lateral force is 
greatest near the wall and least near the centre-line. Hence, as K is increased, 
the migration of particles from the wall towards the ‘equilibrium’ position is 
more effective than the migration from the region nearer the centre-line, and the 
steady-state concentration distribution becomes skewed in favour of more par- 
ticles in the centre and less near the walls (cf. figure Sb). Thus, initially the 
change in pap* is towards lower values as the decrease in dissipation due to 
migration away from the walls dominates the increase caused by outward 
migration from the vicinity of the centre-line. For some intermediate value of K ,  
the effective viscosity begins to increase as the outward migration from the 
centre becomes comparable with the inward migration from the walls. The 
data of Segrb & Silberberg (1963) show only a decrease in viscosity with in- 
creasing flow rate. However, owing to the large particles used (a = 0.6 mm), the 
values of K ( w 108) are well into the migration-dominated regime where @ is 
not small near the equilibrium position and particle-particle interactions are 
important. 
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